
Introduction
Arch Overview
System Models

Conclusion

Combined Object-Lambda Architectures

John Quigley
www.jquigley.com

jquigley#jquigley.com

Chicago Lisp
April 2008

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Research Goals

Question: How to make COLAs with Pepsi and Coke?

The Goal: A new way to construct programming languges
and software systems.

Priorities emphasize simplicity, openness, evolution,
user-centered.

Users should be able to understand and modify anything;
system organization encourages such tinkering.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Research Goals

Question: How to make COLAs with Pepsi and Coke?

The Goal: A new way to construct programming languges
and software systems.

Priorities emphasize simplicity, openness, evolution,
user-centered.

Users should be able to understand and modify anything;
system organization encourages such tinkering.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Research Goals

Question: How to make COLAs with Pepsi and Coke?

The Goal: A new way to construct programming languges
and software systems.

Priorities emphasize simplicity, openness, evolution,
user-centered.

Users should be able to understand and modify anything;
system organization encourages such tinkering.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Research Goals

Question: How to make COLAs with Pepsi and Coke?

The Goal: A new way to construct programming languges
and software systems.

Priorities emphasize simplicity, openness, evolution,
user-centered.

Users should be able to understand and modify anything;
system organization encourages such tinkering.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

System Goals

1 Simplicity: simple to understand and modify;
pervasive self-similarity, system entirely describes itself
within homogenous object-oriented paradigm.

2 Openness: all stages visible, accessible to, and
modifiable by, user.

3 Evolutionary Programming: supports fluid design,
implementation, maintenance phases.

4 User-centered: system strives to serve the
programmer.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Conventional Systems

Application

System

Hardware

Libraries

Compiler

Syntax
SemanticsSource

Runtime

Language

Environment

malleable (under programmer control)

rigid (imposed from outside)

"black box" (hermetically sealed)

Pragmatics

UDP

Figure 1: Conventional programming languages. In green: the programmer can manipulate the
source code at will, and has some illusion (to a greater or lesser extent) of implicit control over
the executable application generated from it. The red boxes are imposed on the programmer
from outside and include all aspects of the language and all (or most) of the environment; usually
inaccessible from user-level code, they form two impenetrable black boxes.

2 Conventional programming languages

The programmer has total control over the source code (within the limits of syntactic
correctness), and some illusion of control (indirect, by implication only) over the final
application that is generated. All other aspects of the system are rigidly predetermined
and present (for all but the simplest programs and/or most simple-minded programmers)
impenetrable, often infuriating, artificial and arbitrary barriers to creativity, expression,
and the use of the most elegant and appropriate solutions.

Figure 1 illustrates a typical programming language.2

Source code is submitted to a compiler that creates a corresponding executable appli-
cation. When run, the application (presumably) performs some useful interaction with its
external environment by invoking functions in the system libraries and/or OS. The program-
mer is dealing with two impenetrable, hermetically-sealed black boxes: the language and the

2In addition to the compiler, the ‘system’ probably consists of nothing more than a text editor, some kind
of symbolic debugging technique, and maybe an offline cross-reference index generator.

4

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Conventional Systems

Programmer dealing with two hermetically-sealed black
boxes: the language and the environment.

Language is a combination of:
1 Syntax: restricts legal content of source code
2 Semantics: predefined meaning of syntactic content
3 Pragmatics: range of externally-visible effects

All are rigid (designed by committee) and inaccessible to
programmer.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Conventional Systems

Programmer dealing with two hermetically-sealed black
boxes: the language and the environment.

Language is a combination of:
1 Syntax: restricts legal content of source code
2 Semantics: predefined meaning of syntactic content
3 Pragmatics: range of externally-visible effects

All are rigid (designed by committee) and inaccessible to
programmer.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Conventional Systems

Environment (libraries, OS) accessible only through
runtime facilities.

Runtime equally rigid and inaccessible, designed by same
committee responsible for language.

Accessing nonstandard facilities generally:
1 Impossible
2 Inefficient
3 Profoundly disruptive to creative process

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Conventional Systems

Access to non-standard facilities usually in the guise of a
FFI or UDP.

FFIs are expensive!

UDPs demand specialized knowledge from programmer
(shift in abstraction levels and representation).

Modification of language itself demands knowledge even
more specialized.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Unconventional Systems

Application

System

Hardware

Libraries

Dynamic
Compiler

Syntax
SemanticsSource

Runtime

malleable (under programmer control)

delicate (but not impossible ;-)

Pragmatics

Figure 14: Unconventional programming languages. In green: a single, homogeneous, dynamic,
late-bound implementation gives the user has control over all phases of application develop-
ment, deployment and execution. Compatible dynamic services can be injected into the kernel,
although modifying the hardware remains tricky (but not impossible, if flexible hardware such
as FPGAs are available and have corresponding COLA back ends).

7 Unconventional programming languages

Within a COLA, a single representation and pervasive, dynamic, late-bound paradigm
gives users control over all aspects of implementation and execution. There are no
barriers to expression or creativity. On the other hand, not having the ‘stable’ (and
impenetrable) base of a more traditional system imposes additional responsibilities on
the user. A useful compromise is to create traditional language/system implementations
within a COLA, to give users some stability while preserving their freedom to modify
any and all aspects of the language/system, at any depth, at any time.

Figure 14 illustrates a COLA-based programming language, in which the user has control
over all phases of implementation. A single representation and paradigm controls program
transformation (source to executable) and the runtime system that supports it, as well as
their implementation and that of end-user code running within the system. Nothing is static,
no aspect of the system is early-bound or rigidly defined/implemented, and nothing is (nec-
essarily) hidden from (inaccessible to) the user. The system implementation and runtime are
first-class components of the running application — or to look at it another way, the entire
application is just an extension of its own implementation mechanism.

Compatibility with the C ABI ensures seamless integration with, and control of, the system
environment. Dynamic compilation services, at any level of abstraction, can be encapsulated

22

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Unconventional Systems

A COLA gives users control over all aspects of system
implementation and execution.

This environment must provide:
1 Unified representation: from source to executable

transformation, runtime implementation and
application code

2 Pervasive dynamism: nothing is static, nor any aspect
early-bound or rigidly defined

3 First-class everything: system implementation and
runtime are first-class components of running
application

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Unconventional Systems

A COLA gives users control over all aspects of system
implementation and execution.

This environment must provide:
1 Unified representation: from source to executable

transformation, runtime implementation and
application code

2 Pervasive dynamism: nothing is static, nor any aspect
early-bound or rigidly defined

3 First-class everything: system implementation and
runtime are first-class components of running
application

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Unconventional Systems

An entire end-user application is just an extension of its
own implementation mechanism!

Programming environment is made homogenous: no
artificial distinctions between language and
implementation.

No a priori fixed points of reference, everything is flexible.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Unconventional Systems

How is any of this even possible?
Let’s take the deep dive!

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Research Goals
System Goals
Conventional Systems
Unconventional Systems

Unconventional Systems

How is any of this even possible?
Let’s take the deep dive!

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

Question: What exactly is a COLA?

It’s a pair of mutually-sustaining abstractions:

One provides representation and the other behavioral
meaning.

Minimal requirement: simplest structures and abstractions
that can produce fully self-describing system.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

Question: What exactly is a COLA?

It’s a pair of mutually-sustaining abstractions:

One provides representation and the other behavioral
meaning.

Minimal requirement: simplest structures and abstractions
that can produce fully self-describing system.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

Question: What exactly is a COLA?

It’s a pair of mutually-sustaining abstractions:

One provides representation and the other behavioral
meaning.

Minimal requirement: simplest structures and abstractions
that can produce fully self-describing system.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

Question: What exactly is a COLA?

It’s a pair of mutually-sustaining abstractions:

One provides representation and the other behavioral
meaning.

Minimal requirement: simplest structures and abstractions
that can produce fully self-describing system.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

Representation provided by prototype-like objects
exchanging messages, organized into clone families.

"Messaging" is defined (recursively) as sending messages
to objects.

One provides representation and the other behavioral
meaning.

Minimal requirement: simplest structures and abstractions
that can produce fully self-describing system.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

Representation provided by prototype-like objects
exchanging messages, organized into clone families.

"Messaging" is defined (recursively) as sending messages
to objects.

One provides representation and the other behavioral
meaning.

Minimal requirement: simplest structures and abstractions
that can produce fully self-describing system.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

Meaning imposed on representation by transforms that
convert structures into executable forms.

These structures are analogous to symbolic expressions in
the lambda calculus.

Semantics of "structures" defined (recursively) by
representing transforms as structures.

These transforms structures are indistinguishable from the
structures they operate upon!

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

Meaning imposed on representation by transforms that
convert structures into executable forms.

These structures are analogous to symbolic expressions in
the lambda calculus.

Semantics of "structures" defined (recursively) by
representing transforms as structures.

These transforms structures are indistinguishable from the
structures they operate upon!

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

One such executable form provides the implementation
of methods installed in objects of representation.

What all this means is that the overall implementation is
very much a circular one.

Put another way, the implementation language and
abstractions of the system are precisely those that the
system implements.

Lispniks will find this a familiar and provacative idea ...
think metacircular!

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

One such executable form provides the implementation
of methods installed in objects of representation.

What all this means is that the overall implementation is
very much a circular one.

Put another way, the implementation language and
abstractions of the system are precisely those that the
system implements.

Lispniks will find this a familiar and provacative idea ...
think metacircular!

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

One such executable form provides the implementation
of methods installed in objects of representation.

What all this means is that the overall implementation is
very much a circular one.

Put another way, the implementation language and
abstractions of the system are precisely those that the
system implements.

Lispniks will find this a familiar and provacative idea ...
think metacircular!

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

And now a momentary break to explain nomenclature.

The representation layer provides language similar to
desirable end-user language.

It’s not, however, an ideal (pervasively late-bound)
implementation of that language.

It is code-named ’Pepsi.’

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

And now a momentary break to explain nomenclature.

The representation layer provides language similar to
desirable end-user language.

It’s not, however, an ideal (pervasively late-bound)
implementation of that language.

It is code-named ’Pepsi.’

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

COLAs

The meaning layer provides everything required for
pervasively late-bound implementation of Pepsi.

Since this is the real thing, it is code-named ’Coke.’

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

High-level abstractions

A COLA consists of a heirarchy of stages.

1 Front end: acquires text from input device
2 Parser: converts text into structured form (abstract

syntax tree)
3 Tree compiler: walks ASTs, applying transformations
4 Virtual processor: translates abstract instructions into

native instructions
5 Dynamic assembler: converts native instructions into

binary for execution

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

High-level abstractions

object memoryparser

GC

console interface

tree compiler

stack compiler

dynamic assembler

heap

text

object
structures

asbtract
machine insns

concrete
machine insns

code generator

keyboard

external
file, etc...

program-generated
structures

program-generated
concrete insns

program-generated
abstract insns

native code

parse trees,

malloc()

optimizer

meta-data

Figure 2: Logical architecture. The representation layer (objects and messaging) provides state
and behaviour for the object memory, storing structures for input (parse trees), intermediate
representations, and per-session persistent state (akin to meta data). The vertical compilation
chain, potentially ranging from an interactive ‘console’ through to the assembly of native code
instructions, is implemented as a series of transformations on semantic structures stored in the
object memory, reified as methods (or functions) associated directly (or indirectly) with ob-
jects and structures. The transformations themselves are described by structures in the object
memory. Each component in the chain (assembler, stack-oriented architecture-neutral code gen-
erator, structure/tree compiler, etc., are libraries that depend only on lower components within
the chain. Each is a useful entry point into the compilation chain and can be used indepen-
dently (inputs driven by some external program) or within a deeper chain (inputs driven by the
component ‘above’ it in the chain) or as a point to rejoin the chain when higher components
have been modified from their original form in-situ by the application.

• The virtual processor translates abstract instructions into native instructions, by a
further process of transformation. A few carefully chosen optimisations are applied
during this stage.7

• Finally, a dynamic assembler converts native instructions into binary for execution.
(In this dynamic, interactive, incremental example the generated code is executed im-
mediately for its side effects.)

The presentation of each stage is as simple as possible, typically a single object (the only
‘client-side’ state retained by a superjacent stage) whose methods define a functional inter-
face. Reconfiguration of the implementation chain is achieved by presenting any compatible
object to its ‘client’ stage. Alternate stages include interpreted execution strategies (of tree
structures or abstract instructions), generation of symbolic code (retention of tree structures

7The criterion of choice is that each optimisation be fast while contributing significantly to the efficiency
of the final code; i.e., it has a small price-performance ratio.

7

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

Communication Algebra

Let’s discuss communication between objects.

Dynamic binding is not a primitive operation.

During binding a message is sent to a (real) object to
perform (define semantics of) method lookup.

Additional mechanisms (e.g., delegation, inheritance)
implemented by overriding default methods that
implement dynamic binding.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

Communication Algebra

Let’s discuss communication between objects.

Dynamic binding is not a primitive operation.

During binding a message is sent to a (real) object to
perform (define semantics of) method lookup.

Additional mechanisms (e.g., delegation, inheritance)
implemented by overriding default methods that
implement dynamic binding.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

Communication Algebra

All manipulation of objects accomplished by message
passing.

All runtime structures (selectors, vtables) are real objects.

Contents of an objects are defined functionally, by
methods that access its state.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

Behavioral Algebra

Now on to a theory of meaning (behavior) to describe
internal implementation of methods.

Structures are build from objects, and formed into a forest
of ASTs.

Each successive AST in the forest is evaluated, by
compiling and executing resulting form.

The meaning of each AST node is given by the dynamic
binding of a compilation closure.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

Behavioral Algebra

Now on to a theory of meaning (behavior) to describe
internal implementation of methods.

Structures are build from objects, and formed into a forest
of ASTs.

Each successive AST in the forest is evaluated, by
compiling and executing resulting form.

The meaning of each AST node is given by the dynamic
binding of a compilation closure.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

Behavioral Algebra

A syntactic closure produces a rewritten AST (similar to
Lisp macros).

A semantic closure produces full or partial
implementations of their AST.

Either can have arbitrary side effects, and neither need
produce a runtime effect.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

COLAs
High-level abstractions
Communication Algebra
Behavioral Algebra

Behavioral Algebra

C99
Smalltalk

Lisp
VVM

CokePepsi

"Pepsi"

OO syntax
OO semantics
OO types

debug

dynamic
incremental

C parse

parse

gen C
exe
dll
lib

vtbl RT GC
MM

gen asm

gen bin

exe

dll

mem

+ managed stack

foreign

struct
interp

exec

object

active
parse

etc...

active
compile

asm

opt

IR

VPU

ccg

lib

lib

"Coke"

C API

sym

static
portabie

prog env, debug env
persistence (src+IR+bin), db conn

bytecode import/interp, image

arbitrary sources, DSL, FSA
arbitrary targets, CPU, DSP, GPU, FPGA

etc...

"COLAs"

Figure 3: Architecture of a COLA. On the left, a minimal ‘pure’ object-oriented language
provides representation and behaviour of data structures, whose execution model (and corre-
sponding runtime support) is rigid only in the intrinsic vtable layout and a global method cache
(see text). Back ends can generate code in a variety of ways: portably and indirectly (generating
C as a high-level assembly language) with little or inefficient debugging support, or directly to
static (file-based) or dynamic (in-memory) native code, with full symbolic debugging. Addi-
tional services include foreign language importers (e.g., a C99 parser to extract platform data
types and interfaces), execution of semi-compiled code (interpretation of data structures without
translation to native code), and compilation for managed (rather than hardware-native) stack
models. On the right, the data structures represent (dynamic) behaviour for all phases of
program translation: parsing, parsed representation, compilation (including intermediate rep-
resentations), optimisation, and code generation. (‘Dynamic’ refers to late-bound behaviour
throughout the architecture that can be modified by users as desired.)

reuse mechanisms) are implemented by overriding the default methods that implement dy-
namic binding.

All manipulation of objects is accomplished by message passing. All runtime structures
(selectors, virtual tables, etc.) are real objects. The contents (or ‘shape’) of an object are
defined functionally, by the methods that access its state.

The above gives us a complete ‘theory’ (or ‘algebra’) of communication between objects
(messaging between objects from within method activations); it will be described in more detail
in Section 4. It does not give us a ‘theory’ (‘algebra’) of meaning (behaviour) to describe the
internal implementation of methods.

On the right of Figure 3, structures (built from the above objects) are formed into a
forest of ASTs. Each successive AST in the forest is evaluated, by compiling it and then

9

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Object Model

Question: What makes a COLA object model special?

Intrinsic object model is simplest possible that can support
messaging.

Method lookup (the operation that defines messaging
semantics) not defined primitively.

All structures involved in implementation of messaging are
full objects that respond to messages.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Object Model

Question: What makes a COLA object model special?

Intrinsic object model is simplest possible that can support
messaging.

Method lookup (the operation that defines messaging
semantics) not defined primitively.

All structures involved in implementation of messaging are
full objects that respond to messages.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Object Model

To preserve generality, flexibility, orthogonality, object
model is too simple to be of practical use on its own

It is transformed into a usable model (supporting reuse,
composition, etc.) by extending it in terms of itself.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Object Model

To preserve generality, flexibility, orthogonality, object
model is too simple to be of practical use on its own

It is transformed into a usable model (supporting reuse,
composition, etc.) by extending it in terms of itself.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Messaging Model

Intrinsic dymanic (late-bound) behavior associated with
object through virtual table.

The association of an object with its virtual table is
unspecified (can be explicit or implicit).

Sending message to object consists of finding an
implementation (at message send time) with receiver’s
vtable.

That implementation corresponds to selector of message
being sent.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Messaging Model

Intrinsic model provides objects and messaging, but no
way to add behavioral composition or reuse.

Consider instead the object just described as a binding
object.

Its primary responsibility is implementing a "lookup"
method.

Extending the model gives an object whose dynamic
behavior (response to message send) is implemented by
user-accessible object.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Messaging Model

To complete the model:

Consider initial vtable (providing behavior for binding
objects) is made real object by associating it with vtable.

Simplest solution is for it to be its own vtable.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Messaging Model

To complete the model:

Consider initial vtable (providing behavior for binding
objects) is made real object by associating it with vtable.

Simplest solution is for it to be its own vtable.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Behavioral Model

Question: How do we give COLA objects meaning?

Objects are composed into syntactic structures
representing meaning (behavior).

These structures translated into an executable form by
successive applications of transforms.

These transforms give semantic meaning to syntactic
structures.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Behavioral Model

Question: How do we give COLA objects meaning?

Objects are composed into syntactic structures
representing meaning (behavior).

These structures translated into an executable form by
successive applications of transforms.

These transforms give semantic meaning to syntactic
structures.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Behavioral Model

Since a transform is just behaviour itself, semantic
structures are syntactic structures.

They’re behavior is simply applied to syntactic structures.

There is no "meta" level!

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Tree Compiler

Objects are formed into structures representing symbolic
syntactic expressions.

Their meaning (semantics, behavior, implementation) is
described by symbolic semantic expressions.

Syntactic expressions are transformed (’evaluated’)
according to semantic expressions by tree compiler.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

Object Model
Messaging Model
Behavioral Model
Tree Compiler

Tree Compiler

Tree compiler places no intrinsic semantic meaning on
structures it compiles.

Evaluation eventually yields:
1 executable representation in memory (or file)
2 side-effects modifying evaluation context itself

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

What’s Left
Constraints
More Information
The End

What’s Left

So many things left to talk about!

1 OMeta: object-oriented PEG (Parsing Expressing
Grammars) for describing syntax

2 Bootstrapping: how three object types and five
methods can bootstrap entire model

3 FONC: The overarching goals of this entire ambitious
effort

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

What’s Left
Constraints
More Information
The End

What’s Left

So many things left to talk about!

1 OMeta: object-oriented PEG (Parsing Expressing
Grammars) for describing syntax

2 Bootstrapping: how three object types and five
methods can bootstrap entire model

3 FONC: The overarching goals of this entire ambitious
effort

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

What’s Left
Constraints
More Information
The End

Constraints

Issue: Model depends on using C stack and has design
goal of complete compatability with native calling
method.

Limits how you might implement concurrency, coroutines
or threads.

Limits tail call optimization to whatever the C compiler
might provide.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

What’s Left
Constraints
More Information
The End

Constraints

Issue: Model depends on using C stack and has design
goal of complete compatability with native calling
method.

Limits how you might implement concurrency, coroutines
or threads.

Limits tail call optimization to whatever the C compiler
might provide.

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

What’s Left
Constraints
More Information
The End

Constraints

Issue: Object model depends on method caching
scheme that uses hash based on message selector and
vtable of first argument only.

Restricts what algorithms that could be used to
implement multiple argument dispatch (since hash will
not depend on other arguments).

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

What’s Left
Constraints
More Information
The End

Constraints

Issue: Object model depends on method caching
scheme that uses hash based on message selector and
vtable of first argument only.

Restricts what algorithms that could be used to
implement multiple argument dispatch (since hash will
not depend on other arguments).

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

What’s Left
Constraints
More Information
The End

More Information

Material for this presentation taken from
"Making COLAs with Pepsi and Coke"

Written by Ian Piumarta

http://piumarta.com/software/cola/colas-whitepaper.pdf

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

What’s Left
Constraints
More Information
The End

More Information

Other sources of interest.

1 Viewpoints Research Institute:
www.vpri.org

2 Fundamentals of New Computing:
http://www.vpri.org/html/work/ifnct.htm

3 COLA project page:
http://piumarta.com/software/cola/

John Quigley Combined Object-Lambda Architectures



Introduction
Arch Overview
System Models

Conclusion

What’s Left
Constraints
More Information
The End

The End

That’s all I’ve got for now.
Can I take any questions?

John Quigley Combined Object-Lambda Architectures


	Introduction
	Research Goals
	System Goals
	Conventional Systems
	Unconventional Systems

	Arch Overview
	COLAs
	High-level abstractions
	Communication Algebra
	Behavioral Algebra

	System Models
	Object Model
	Messaging Model
	Behavioral Model
	Tree Compiler

	Conclusion
	What's Left
	Constraints
	More Information
	The End


