Combined Object-Lambda Architectures

John Quigley
www.jquigley.com
jauigley#jquigley.com

Chicago Lisp

April 2008

John Quigley Combined Object-Lambda Architectures

Infroduction Research Goals

Research Goals

Question: How to make COLAs with Pepsi and Coke?

John Quigley Combined Object-Lambda Architectures

Infroduction Research Goals

Research Goals

Question: How to make COLAs with Pepsi and Coke?

The Goal: A new way to construct programming languges
and software systemes.

John Quigley Combined Object-Lambda Architectures

Infroduction Research Goals

Research Goals

Question: How to make COLAs with Pepsi and Coke?

The Goal: A new way to construct programming languges
and software systemes.

Priorities emphasize simplicity, openness, evolution,
user-centered.

John Quigley Combined Object-Lambda Architectures

Infroduction Research Goals

Research Goals

Question: How to make COLAs with Pepsi and Coke?

The Goal: A new way to construct programming languges
and software systemes.

Priorities emphasize simplicity, openness, evolution,
user-centered.

Users should be able to understand and modify anything;
system organization encourages such tinkering.

John Quigley Combined Object-Lambda Architectures

Infroduction

System Goals

Simplicity: simple to understand and modify:;
pervasive self-similarity, system entirely describes itself
within homogenous object-oriented paradigm.

Openness: all stages visible, accessible to, and
modifiable by, user.

Evolutionary Programming: supports fluid design,
implementation, maintenance phases.

User-centered: system strives to serve the
programmer.

John Quigley Combined Object-Lambda Architectures

Infroduction

Conventional Systems

Syntax
Source Semantics Application
Pragmatics
Compiler Runtime UDP
Language

Environment

malleable (under programmer control)

rigid (imposed from outside)

lack box" (hermetically sealed)

l

System

l

Libraries

Hardware

Infroduction

Conventional Systems
Unconventional Systems

Conventional Systems

Programmer dealing with two hermetically-sealed black
boxes: the language and the environment.

John Quigley Combined Object-Lambda Architectures

Infroduction

Conventional Systems
Unconventional Systems

Conventional Systems

Programmer dealing with two hermetically-sealed black
boxes: the language and the environment.

Language is a combination of:
Syntax: restricts legal content of source code
Semantics: predefined meaning of syntactic conftent
Pragmatics: range of externally-visible effects

All are rigid (designed by committee) and inaccessible to
programmet.

John Quigley Combined Object-Lambda Architectures

Infroduction

Conventional Systems
Unconventional Systems

Conventional Systems

Environment (libraries, OS) accessible only through
runtime facilifies.

Runtime equally rigid and inaccessible, designed by same
committee responsible for language.

Accessing nonstandard facilities generally:
Impossible
Inefficient
Profoundly disruptive to creative process

John Quigley Combined Object-Lambda Architectures

Infroduction

Conventional Systems
Unconventional Systems

Conventional Systems

Access to non-standard facilities usually in the guise of a
FFl or UDP

FFls are expensive!

UDPs demand specialized knowledge from programmer
(shift in abstraction levels and representation).

Modification of language itself demands knowledge even
more specialized.

John Quigley Combined Object-Lambda Architectures

Infroduction

Unconventional Systems

Unconventional Systems

—_— Application

Dynamic
Compilel
A

nalleable (under program ontrol

delicate (but not impossible ;-)

hn Quigley Combined

Infroduction

entional Syste
Unconventional Systems

Unconventional Systems

A COLA gives users control over all aspects of system
implementation and execution.

John Quigley Combined Object-Lambda Architectures

Infroduction

stems
Unconventional Systems

Unconventional Systems

A COLA gives users control over all aspects of system
implementation and execution.

This environment must provide:

Unified representation: from source to executable
transformation, runtfime implementation and
application code

Pervasive dynamism: nothing is static, nor any aspect
early-bound or rigidly defined

First-class everything: system implementation and
runfime are first-class components of running
application

John Quigley Combined Object-Lambda Architectures

Infroduction

entional Syste
Unconventional Systems

Unconventional Systems

An entire end-user application is just an extension of its
own implementation mechanism!

Programming environment is made homogenous: no
artificial distinctions between language and
implementation.

No a priori fixed points of reference, everything is flexible.

John Quigley Combined Object-Lambda Architectures

Infroduction

Unconventional Systems

How is any of this even possible?

John Quigley Combined Object-Lambda Architectures

Infroduction

Unconventional Systems

How is any of this even possible?
Let’s take the deep divel

John Quigley Combined Object-Lambda Architectures

Arch Overview

ation Alg
al Algebro

Question: What exactly is a COLA?

Quigley Combined Object:

Arch Overview

Question: What exactly is a COLA?

[t’s a pair of mutually-sustaining abstractions:

John Quigley Combined Object-Lambda Architectures

Arch Overview

Question: What exactly is a COLA?
[t’s a pair of mutually-sustaining abstractions:

One provides representation and the other behavioral
meaning.

John Quigley Combined Object-Lambda Architectures

Arch Overview

Question: What exactly is a COLA?
[t’s a pair of mutually-sustaining abstractions:

One provides representation and the other behavioral
meaning.

Minimal requirement: simplest structures and abstractions
that can produce fully self-describing system.

John Quigley Combined Object-Lambda Architectures

Arch Overview

Representation provided by prototype-like objects
exchanging messages, organized into clone families.

John Quigley Combined Object-Lambda Architectures

Arch Overview

Representation provided by prototype-like objects
exchanging messages, organized into clone families.

"Messaging" is defined (recursively) as sending messages
to objects.

One provides representation and the other behavioral
meaning.

Minimal requirement: simplest structures and abstractions
that can produce fully self-describing system.

John Quigley Combined Object-Lambda Architectures

Arch Overview

Meaning imposed on representation by tfransforms that
convert structures into executable forms.

John Quigley Combined Object-Lambda Architectures

Arch Overview

Meaning imposed on representation by tfransforms that
convert structures into executable forms.

These structures are analogous to symbolic expressions in
the lambda calculus.

Semantics of "structures" defined (recursively) by
representing transforms as structures.

These fransforms structures are indistinguishable from the
structures they operate upon!

John Quigley Combined Object-Lambda Architectures

Arch Overview

One such executable form provides the implementation
of methods installed in objects of representation.

John Quigley Combined Object-Lambda Architectures

Arch Overview

One such executable form provides the implementation
of methods installed in objects of representation.

What all this means is that the overall implementation is
very much a circular one.

Put another way, the implementation language and

abstractions of the system are precisely those that the
system implements.

John Quigley Combined Object-Lambda Architectures

Arch Overview

One such executable form provides the implementation
of methods installed in objects of representation.

What all this means is that the overall implementation is
very much a circular one.

Put another way, the implementation language and
abstractions of the system are precisely those that the
system implements.

Lispniks will find this a familiar and provacative idea ...
think metacircular!

John Quigley Combined Object-Lambda Architectures

Arch Overview

And now a momentary break to explain nomenclature.

John Quigley Combined Object-Lambda Architectures

Arch Overview

And now a momentary break to explain nomenclature.

The representation layer provides language similar to
desirable end-user language.

[t's not, however, an ideal (pervasively late-bound)
implementation of that language.

It is code-named ‘Pepsi.

John Quigley Combined Object-Lambda Architectures

Arch Overview

The meaning layer provides everything required for
pervasively late-bound implementation of Pepsi.

Since this is the real thing, it is code-named ‘Coke .’

John Quigley Combined Object-Lambda Architectures

Arch Overview

High-level abstractions

A COLA consists of a heirarchy of stages.

Front end: acquires text from input device

Parser: converts text into structured form (abstract
syntax tree)

Tree compiler: walks ASTs, applying fransformations

Virtual processor: translates abstract instructions into
native instructions

Dynamic assembler. converts native instructions intfo
binary for execution

John Quigley Combined Object-Lambda Architectures

LAs

Arch Overview High-level abstractions

High-level abstractions

keyboard —»i console interface

external

. object memor
file, etc... : ’
parse trees,
structures meta-data
program-generated 1 i
ree compiler
structures p =
asbtract
machine insns
program-generated stack compiler
abstract insns
optimizer
code generator heap
concrete

machine insns

program-generated 1y amic assembler]

concrete insns

n Quigley Combined

Arch Overview <
Communication Algebra
Beh

Communication Algebra

Let’s discuss communication between objects.

John Quigley Combined Object-Lambda Architectures

Arch Overview

Communication Algebra

Let’s discuss communication between objects.
Dynamic binding is not a primitive operation.

During binding a message is sent to a (real) object to
perform (define semantics of) method lookup.

Additional mechanisms (e.g., delegation, inheritance)

implemented by overriding default methods that
implement dynamic binding.

John Quigley Combined Object-Lambda Architectures

Arch Overview [ons
Communication Algebra
Bel gebra

Communication Algebra

All manipulation of objects accomplished by message
passing.

All runtime structures (selectors, vtables) are real objects.

Contents of an objects are defined functionally, by
methods that access its state.,

John Quigley Combined Object-Lambda Architectures

Arch Overview

vioral Algebra

Behavioral Algebra

Now on to a theory of meaning (behavior) to describe
internal implementation of methods.

John Quigley Combined Object-Lambda Architectures

Arch Overview
nun
Behavioral Algebra

Behavioral Algebra

Now on to a theory of meaning (behavior) to describe
internal implementation of methods.

Structures are build from objects, and formed into a forest
of ASTs.

Each successive AST in the forest is evaluated, by
compiling and executing resulting form.

The meaning of each AST node is given by the dynamic
binding of a compilation closure.

John Quigley Combined Object-Lambda Architectures

Arch Overview

vioral Algebra

Behavioral Algebra

A syntactic closure produces a rewritten AST (similar to
Lisp macros).

A semantic closure produces full or partial
implementations of their AST.

Either can have arbitrary side effects, and neither need
produce a runtime effect.

John Quigley Combined Object-Lambda Architectures

Arch Overview

Behavioral Algebra

Behavioral Algebra

"COLAs"
"Pepsi" "Coke"
e ————
| |
| |
| |
00 syntax | Pepsi I
00 semantics _stlruct } } _
00 types nierp | W] e
1| parse _}— 1| compile
static | |
portabie | |
| |
debug —> sym | vtblRT hellﬁ ‘o, ‘ }
} VPU —» lib
exe |
| CAPI
dynamic dil} +managed stack I
incremental ceg —» lib

mem,

hn Quigley Combined Object-Lambda Architectures

Object Model

System Models

Object Model

Question: What makes a COLA object model special?

John Quigley Combined Object-Lambda Architectures

Object Model

System Models

Object Model

Question: What makes a COLA object model special?

Intrinsic object model is simplest possible that can support
messaging.

Method lookup (the operation that defines messaging
semantics) not defined primitively.

All structures involved in implementation of messaging are
full objects that respond to messages.

John Quigley Combined Object-Lambda Architectures

Object Model

System Models

Object Model

To preserve generality, flexibility, orthogonality, object
model is too simple to be of practical use on its own

John Quigley Combined Object-Lambda Architectures

Object Model

System Models

Object Model

To preserve generality, flexibility, orthogonality, object
model is too simple to be of practical use on its own

It is fransformed intfo a usable model (supporting reuse,
composition, etc.) by extending it in terms of itself.

John Quigley Combined Object-Lambda Architectures

Obje del

Messaging Model
System Models B del
T

Messaging Model

Intrinsic dymanic (late-bound) behavior associated with
object through virtual table.

The association of an object with its virtual fable is
unspecified (can be explicit or implicit).

Sending message to object consists of finding an
implementation (at message send time) with receiver’s
vtable.

That implementation corresponds to selector of message
being sent.

John Quigley Combined Object-Lambda Architectures

System Models

Messaging Model

Intrinsic model provides objects and messaging, but no
way to add behavioral composition or reuse.

Consider instead the object just described as a binding
object.

Its primary responsibility is implementing a "lookup"
method.

Extending the model gives an object whose dynamic

behavior (response to message send) is implemented by
user-accessible object.

John Quigley Combined Object-Lambda Architectures

Object Model
Messaging Model

System Models el

Messaging Model

To complete the model:

Consider initial vtable (providing behavior for binding
objects) is made real object by associating it with vtable.

John Quigley Combined Object-Lambda Architectures

System Models

Messaging Model

To complete the model:

Consider initial vtable (providing behavior for binding
objects) is made real object by associating it with vtable.

Simplest solution is for it to be its own vtable.

John Quigley Combined Object-Lambda Architectures

System Models Behavioral Model

Tree Compiler

Behavioral Model

Question: How do we give COLA objects meaning?

John Quigley Combined Object-Lambda Architectures

System Models Behavioral Model
Tree C iler

Behavioral Model

Question: How do we give COLA objects meaning?

Objects are composed into syntactic structures
representing meaning (behavior).

These structures translated info an executable form by
successive applications of transforms.

These transforms give semantic meaning to syntactic
structures.

John Quigley Combined Object-Lambda Architectures

System Models Behavioral Model
Tree Compiler

Behavioral Model

Since a transform is just behaviour itself, semantic
structures are syntactic structures.

They're behavior is simply applied to syntactic structures.

There is no "'meta" level!

John Quigley Combined Object-Lambda Architectures

System Models ral
Tree Compiler

Tree Compiler

Objects are formed into structures representing symbolic
syntactic expressions.

Their meaning (semantics, behavior, implementation) is
described by symbolic semantic expressions.

Syntactic expressions are transformed (‘evaluated’)
according to semantic expressions by tree compiler.

John Quigley Combined Object-Lambda Architectures

System Models ral
Tree Compiler

Tree Compiler

Tree compiler places no intrinsic semantic meaning on
structures it compiles.

Evaluation eventually yields:
executable representation in memory (or file)
side-effects modifying evaluation context itself

John Quigley Combined Object-Lambda Architectures

Conclusion The End

What's Left

So many things left to talk about!

Quigley Combined Object:

Conclusion

What's Left

So many things left to talk about!
OMeta: object-oriented PEG (Parsing Expressing
Grammars) for describing syntax

Bootstrapping: how three object types and five
methods can booftstrap entire model

FONC: The overarching goals of this entire ambitious
effort

John Quigley Combined Object-Lambda Architectures

What's Left
Constraints
ormation
Conclusion

Constraints

Issue: Model depends on using C stack and has design
goal of complete compatability with native calling
method.

John Quigley Combined Object-Lambda Architectures

What's Left

Constraints

M formation
Conclusion Th

Constraints

Issue: Model depends on using C stack and has design
goal of complete compatability with native calling
method.

Limits how you might implement concurrency, coroutines
or threads.

Limits tail call optimization to whatever the C compiler
might provide.

John Quigley Combined Object-Lambda Architectures

What's Left
Constraints
ormation
Conclusion

Constraints

Issue: Object model depends on method caching
scheme that uses hash based on message selector and
vtable of first argument only.

John Quigley Combined Object-Lambda Architectures

Conclusion The End

Constraints

Issue: Object model depends on method caching
scheme that uses hash based on message selector and
vtable of first argument only.

Restricts what algorithms that could be used to

implement multiple argument dispatch (since hash will
not depend on other arguments).

John Quigley Combined Object-Lambda Architectures

More Information
Conclusion The End

More Information

Material for this presentation taken from
‘Making COLAs with Pepsi and Coke"
Written by lan Piumarta

http://piumarta.com/software/cola/colas-whitepaper.pdf

John Quigley Combined Object-Lambda Architectures

Conclusion

More Information

Ofther sources of inferest.
Viewpoints Research Institute:
www.vpri.org

Fundamentals of New Computing:
http://www.vpri.org/html/work/ifnct.ntm

COLA project page:
http://piumarta.com/software/cola/

John Quigley Combined Object-Lambda Architectures

Conclusion The End

The End

That’s all I've got for now.
Can | take any questions?

John Quigley Combined Object-Lambda Architectures

	Introduction
	Research Goals
	System Goals
	Conventional Systems
	Unconventional Systems

	Arch Overview
	COLAs
	High-level abstractions
	Communication Algebra
	Behavioral Algebra

	System Models
	Object Model
	Messaging Model
	Behavioral Model
	Tree Compiler

	Conclusion
	What's Left
	Constraints
	More Information
	The End

