
Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Anatomy of Lisp

John Quigley
www.jquigley.com

jquigley@jquigley.com

Chicago BarCamp, 2007

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

The Considered life

“The unconsidered life is not worth living.”

— Socrates

“That language is an instrument of human reason,
and not merely a medium for the expression of
thought, is a truth generally admitted.”

– George Boole

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

What Is The Right Tool?

1 Memory management: garbage collection
2 Object oriented: modularity and encapsualtion
3 Egalitarianism: first class everything
4 Libraries: great stdlib, powerful third-party facilities
5 Introspection: program available as date

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

What Is The Right Tool?

1 Memory management: garbage collection
2 Object oriented: modularity and encapsualtion
3 Egalitarianism: first class everything
4 Libraries: great stdlib, powerful third-party facilities
5 Introspection: program available as date

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

What Is The Right Tool?

1 Memory management: garbage collection
2 Object oriented: modularity and encapsualtion
3 Egalitarianism: first class everything
4 Libraries: great stdlib, powerful third-party facilities
5 Introspection: program available as date

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

What Is The Right Tool?

1 Memory management: garbage collection
2 Object oriented: modularity and encapsualtion
3 Egalitarianism: first class everything
4 Libraries: great stdlib, powerful third-party facilities
5 Introspection: program available as date

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

What Is The Right Tool?

1 Memory management: garbage collection
2 Object oriented: modularity and encapsualtion
3 Egalitarianism: first class everything
4 Libraries: great stdlib, powerful third-party facilities
5 Introspection: program available as date

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

Lisp Is The Right Tool!

1 Memory management: bright gc, no pointers
2 Object oriented: “With macros, closures, and run-time

typing, Lisp transcends object-oriented programming.
The generic function model is preferred to the
message passing.”

3 Egalitarianism: packages, functions, closures,
structures, arrays . . . everything is first-class!

4 Libraries: full library supplemented with asdf
5 Introspection: code as list as data

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

Lisp Is The Right Tool!

1 Memory management: bright gc, no pointers
2 Object oriented: “With macros, closures, and run-time

typing, Lisp transcends object-oriented programming.
The generic function model is preferred to the
message passing.”

3 Egalitarianism: packages, functions, closures,
structures, arrays . . . everything is first-class!

4 Libraries: full library supplemented with asdf
5 Introspection: code as list as data

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

Lisp Is The Right Tool!

1 Memory management: bright gc, no pointers
2 Object oriented: “With macros, closures, and run-time

typing, Lisp transcends object-oriented programming.
The generic function model is preferred to the
message passing.”

3 Egalitarianism: packages, functions, closures,
structures, arrays . . . everything is first-class!

4 Libraries: full library supplemented with asdf
5 Introspection: code as list as data

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

Lisp Is The Right Tool!

1 Memory management: bright gc, no pointers
2 Object oriented: “With macros, closures, and run-time

typing, Lisp transcends object-oriented programming.
The generic function model is preferred to the
message passing.”

3 Egalitarianism: packages, functions, closures,
structures, arrays . . . everything is first-class!

4 Libraries: full library supplemented with asdf
5 Introspection: code as list as data

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

Lisp Is The Right Tool!

1 Memory management: bright gc, no pointers
2 Object oriented: “With macros, closures, and run-time

typing, Lisp transcends object-oriented programming.
The generic function model is preferred to the
message passing.”

3 Egalitarianism: packages, functions, closures,
structures, arrays . . . everything is first-class!

4 Libraries: full library supplemented with asdf
5 Introspection: code as list as data

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

The Bottom Line

1 Lisp is a dynamic language as it grows to meet your
needs

2 Lisp is a programmable proogramming langage
3 Lisp is for doing what you’ve been told is impossible.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

The Bottom Line

1 Lisp is a dynamic language as it grows to meet your
needs

2 Lisp is a programmable proogramming langage
3 Lisp is for doing what you’ve been told is impossible.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

The Bottom Line

1 Lisp is a dynamic language as it grows to meet your
needs

2 Lisp is a programmable proogramming langage
3 Lisp is for doing what you’ve been told is impossible.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Introduction
The Right Tool
The Greatest

The Greatest

“Lisp is the greatest single programming
language ever designed.”

— Alan Kay

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Standard Syntax

Question: What is XML?

XML is standardized syntax used to express arbitrary
hierarchical data.

To-do lists, web pages, medical records an dconfig files
are all examples of XML use.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Standard Syntax

Question: What is XML?

XML is standardized syntax used to express arbitrary
hierarchical data.

To-do lists, web pages, medical records an dconfig files
are all examples of XML use.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Standard Syntax

Question: What is XML?

XML is standardized syntax used to express arbitrary
hierarchical data.

To-do lists, web pages, medical records an dconfig files
are all examples of XML use.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

A To-do List

Let’s use an example to-do list:

An example to-do list

<todo name="housework">
<item priority="high">Clean the house.</item>
<item priority="medium">Wash the dishes.</item>
<item priority="medium">Buy more soap.</item>

</todo>

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

A To-do List

Let’s use an example to-do list:

An example to-do list

<todo name="housework">
<item priority="high">Clean the house.</item>
<item priority="medium">Wash the dishes.</item>
<item priority="medium">Buy more soap.</item>

</todo>

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

A To-do List

What happens if we submit this list to an XML parer? . . .
Once the data is parsed, how is it represented in
memory?

The most natural representation is as tree.

Anything that can be represented as a tree, can be
represented in XML, and vice-versa.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

A To-do List

What happens if we submit this list to an XML parer? . . .
Once the data is parsed, how is it represented in
memory?

The most natural representation is as tree.

Anything that can be represented as a tree, can be
represented in XML, and vice-versa.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

A To-do List

What happens if we submit this list to an XML parer? . . .
Once the data is parsed, how is it represented in
memory?

The most natural representation is as tree.

Anything that can be represented as a tree, can be
represented in XML, and vice-versa.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code As A Tree

Question: What other type of data is often represented as
a tree?

Any compiler inevitably parses the srouce code into an
abstract syntax tree.

This shouldn’t surprise you: source code is hierarchical.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code As A Tree

Question: What other type of data is often represented as
a tree?

Any compiler inevitably parses the srouce code into an
abstract syntax tree.

This shouldn’t surprise you: source code is hierarchical.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code As A Tree

Question: What other type of data is often represented as
a tree?

Any compiler inevitably parses the srouce code into an
abstract syntax tree.

This shouldn’t surprise you: source code is hierarchical.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code As XML

If all source code is a tree, and any tree can be
represented as XML:

An example ’add’ function

int add(int arg1, int arg2)
{

return arg1 + arg2;
}

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code As XML

If all source code is a tree, and any tree can be
represented as XML:

An example ’add’ function

int add(int arg1, int arg2)
{

return arg1 + arg2;
}

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

XML ’add’ function

Can you convert that function to an XML equivalent?

An example ’add’ function

<define-function return-type="int"name="add">
<arguments>

<argument type="int">arg1</argument>
<argument type="int">arg2</argument>

</arguments>
<body>

<return>
<add value1="arg1"value2="arg2"/>

</return>
</body>

</define>
Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

XML ’add’ function

Can you convert that function to an XML equivalent?

An example ’add’ function

<define-function return-type="int"name="add">
<arguments>

<argument type="int">arg1</argument>
<argument type="int">arg2</argument>

</arguments>
<body>

<return>
<add value1="arg1"value2="arg2"/>

</return>
</body>

</define>
Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code or Data

Classify our XML ’add’ function: is it data? code?

We could easily write a small interpreter for this XML code
and we could execute it directly.

It’s data . . . and code.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code or Data

Classify our XML ’add’ function: is it data? code?

We could easily write a small interpreter for this XML code
and we could execute it directly.

It’s data . . . and code.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code or Data

Classify our XML ’add’ function: is it data? code?

We could easily write a small interpreter for this XML code
and we could execute it directly.

It’s data . . . and code.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code is Data

We’ve arrived at the following interesting point:

We now know that code is always data.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Standard Syntax
A To-do List
Code As XML
Code or Data

Code is Data

We’ve arrived at the following interesting point:

We now know that code is always data.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

XML Is Flexible

Ant takes an XML file with specific build instructions and
interprets them.

A simple XML instruction causes a Java class to be
executed:

An Ant instruction

<copy todir="../new/dir">
<fileset dir="src_dir"/>

</copy>

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

XML Is Flexible

Ant takes an XML file with specific build instructions and
interprets them.

A simple XML instruction causes a Java class to be
executed:

An Ant instruction

<copy todir="../new/dir">
<fileset dir="src_dir"/>

</copy>

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

XML Is Flexible

Ant takes an XML file with specific build instructions and
interprets them.

A simple XML instruction causes a Java class to be
executed:

An Ant instruction

<copy todir="../new/dir">
<fileset dir="src_dir"/>

</copy>

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

XML Is Powerful

That snippet copies a source directory to a destination
directory.

Ant acts as a interpreter for a language that uses XML as
its syntax.

Ant translates XML elements to appropriate Java
instructions.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

XML Is Powerful

That snippet copies a source directory to a destination
directory.

Ant acts as a interpreter for a language that uses XML as
its syntax.

Ant translates XML elements to appropriate Java
instructions.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

XML Is Powerful

That snippet copies a source directory to a destination
directory.

Ant acts as a interpreter for a language that uses XML as
its syntax.

Ant translates XML elements to appropriate Java
instructions.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

Why XML?

What is the advantage of using interpreted XML over
simple Java code?

XML has the property of being flexible when introducing
semantic constructs.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

Why XML?

What is the advantage of using interpreted XML over
simple Java code?

XML has the property of being flexible when introducing
semantic constructs.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

A Semantic Construct

Can we represent the ’copy’ example above in Java?

An Ant instruction

CopyTask copy = new CopyTask();
Fileset fileset = new Fileset();

fileset.setDir("src_dir");
copy.setToDir("../new/dir");
copy.setFileset(fileset);

copy.execute();

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

XML Is Flexible
XML Is Powerful
Why XML?
A Semantic Construct

A Semantic Construct

Can we represent the ’copy’ example above in Java?

An Ant instruction

CopyTask copy = new CopyTask();
Fileset fileset = new Fileset();

fileset.setDir("src_dir");
copy.setToDir("../new/dir");
copy.setFileset(fileset);

copy.execute();

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

A Special Operator

That code was almost the same as the original XML.

Question: What’s different?

Answer: the XML snippet introduces a special semantic
construct for copying.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

A Special Operator

That code was almost the same as the original XML.

Question: What’s different?

Answer: the XML snippet introduces a special semantic
construct for copying.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

A Special Operator

That code was almost the same as the original XML.

Question: What’s different?

Answer: the XML snippet introduces a special semantic
construct for copying.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

Hypothetical Java

If we could do it in Java, it would look like this:

This Java Isn’t Feasible

copy("../new/dir")
{

fileset("src_dir");
}

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

Hypothetical Java

If we could do it in Java, it would look like this:

This Java Isn’t Feasible

copy("../new/dir")
{

fileset("src_dir");
}

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

About That Implementation

We could extend the Java language to introduce an
operator for copying files.

We would do this by modifying the AST grammar that the
Java compiler accepts.

We can’t do this with standard Java ficilities, but we can
do it in XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

About That Implementation

We could extend the Java language to introduce an
operator for copying files.

We would do this by modifying the AST grammar that the
Java compiler accepts.

We can’t do this with standard Java ficilities, but we can
do it in XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

About That Implementation

We could extend the Java language to introduce an
operator for copying files.

We would do this by modifying the AST grammar that the
Java compiler accepts.

We can’t do this with standard Java ficilities, but we can
do it in XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

Extending Ant

Why not extend Ant, in Ant itself?

If Ant provided constructs to develop tasks in Ant itself
we’d reach a higher level of abstraction.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

Extending Ant

Why not extend Ant, in Ant itself?

If Ant provided constructs to develop tasks in Ant itself
we’d reach a higher level of abstraction.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

Ant Tasks

Consider the possibility:

This Java Isn’t Feasible

<task name="Test">
<echo message="Hello World!"/>

</task>
<Test />

If we could write a “task” task in Java and make Ant able
to extend itself using Ant-XML!

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

Ant Tasks

Consider the possibility:

This Java Isn’t Feasible

<task name="Test">
<echo message="Hello World!"/>

</task>
<Test />

If we could write a “task” task in Java and make Ant able
to extend itself using Ant-XML!

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

A Special Operator
About That Implementation
Extending Ant
Ant Tasks

Ant Tasks

Consider the possibility:

This Java Isn’t Feasible

<task name="Test">
<echo message="Hello World!"/>

</task>
<Test />

If we could write a “task” task in Java and make Ant able
to extend itself using Ant-XML!

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Welcome To Lisp

Oh, by the way, you’re looking at Lisp code.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Why Not XML

Self-extending Ant wouldn’t be useful.

The reason for this is XML’s verbosity.

The solution to this problem involves using a less verbose
alternative to XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Why Not XML

Self-extending Ant wouldn’t be useful.

The reason for this is XML’s verbosity.

The solution to this problem involves using a less verbose
alternative to XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Why Not XML

Self-extending Ant wouldn’t be useful.

The reason for this is XML’s verbosity.

The solution to this problem involves using a less verbose
alternative to XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Symbolic Expressions

We don’t have to use XML’s angle brackets to
represented trees.

We could use other formats.

One such format is called a symbolic expression.

S-expressions accomplish the same goals as XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Symbolic Expressions

We don’t have to use XML’s angle brackets to
represented trees.

We could use other formats.

One such format is called a symbolic expression.

S-expressions accomplish the same goals as XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Symbolic Expressions

We don’t have to use XML’s angle brackets to
represented trees.

We could use other formats.

One such format is called a symbolic expression.

S-expressions accomplish the same goals as XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Symbolic Expressions

We don’t have to use XML’s angle brackets to
represented trees.

We could use other formats.

One such format is called a symbolic expression.

S-expressions accomplish the same goals as XML.

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Lisp ’copy’

lisp implementation of ’copy’

(copy
(todir "../new/dir")
(fileset (dir "src_dir")))

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Lisp ’copy’

lisp implementation of ’copy’

(copy
(todir "../new/dir")
(fileset (dir "src_dir")))

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Lisp Representation

What’s different with our Lisp representation?

angled brackets seem to be replaced by parens
dispense of unnecessary ’(/element)’

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Lisp Representation

What’s different with our Lisp representation?

angled brackets seem to be replaced by parens
dispense of unnecessary ’(/element)’

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

A Lisp ’task’

Let’s look at our ’task’ code in something that looks like
Lisp:

Lisp ’task’

(task (name "Test")
(echo (message "Hello World!")))

(Test)

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

A Lisp ’task’

Let’s look at our ’task’ code in something that looks like
Lisp:

Lisp ’task’

(task (name "Test")
(echo (message "Hello World!")))

(Test)

Quigley Anatomy of Lisp



Introduction
An Intro To XML

Interpreting XML
Almost Lisp

Welcome To Lisp

Why Not XML
Symbolic Expressions
Lisp ’copy’
Lisp ’task’
Welcome To Lisp

Welcome To Lisp

S-expressions are called lists in Lisp lingo.

The Lisp code above is a tree, implemented via a Lisp list.

Welcome to Lisp, you’ll enjoy your stay.

Quigley Anatomy of Lisp


	Introduction
	Introduction
	The Right Tool
	The Greatest

	An Intro To XML
	Standard Syntax
	A To-do List
	Code As XML
	Code or Data

	Interpreting XML
	XML Is Flexible
	XML Is Powerful
	Why XML?
	A Semantic Construct

	Almost Lisp
	A Special Operator
	About That Implementation
	Extending Ant
	Ant Tasks

	Welcome To Lisp
	Why Not XML
	Symbolic Expressions
	Lisp 'copy'
	Lisp 'task'
	Welcome To Lisp


